Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 119(10): 2831-2841, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35822204

RESUMO

Hairy root systems have proven to be a viable alternative for recombinant protein production. For recalcitrant proteins, maximizing the productivity of hairy root cultures is essential. The aim of this study was to optimize a Brassica rapa rapa hairy root process for secretion of alpha- l-iduronidase (IDUA), a biologic of medical value. The process was first optimized with hairy roots expressing eGFP. For the biomass optimization, the highest biomass yields were achieved in modified Gamborg B5 culture medium. For the secretion induction, the optimized secretion media was obtained with additives (1.5 g/l PVP + 1 mg/l 2,4- d + 20.5 g/l KNO3 ) resulting in 3.4 fold eGFP secretion when compared to the non-induced control. These optimized conditions were applied to the IDUA-expressing hairy root clone, confirming that the highest yields of secreted IDUA occurred when using the defined additive combination. The functionality of the IDUA protein, secreted and intracellular, was confirmed with an enzymatic activity assay. A > 150-fold increase of the IDUA activity was observed using an optimized secretion medium, compared with a non-induced medium. We have proven that our B. rapa rapa hairy root system can be harnessed to secrete recalcitrant proteins, illustrating the high potential of hairy roots in plant molecular farming.


Assuntos
Produtos Biológicos , Brassica , Produtos Biológicos/metabolismo , Brassica/genética , Brassica/metabolismo , Agricultura Molecular , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
ACS Synth Biol ; 8(7): 1685-1690, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31264406

RESUMO

Escherichia coli has been widely used as a platform microorganism for both membrane protein production and cell factory engineering. The current methods to produce membrane proteins in this organism require the induction of target gene expression and often result in unstable, low yields. Here, we present a method combining a constitutive promoter with a library of bicistronic design (BCD) elements, which enables inducer-free, tuned translation initiation for optimal protein production. Our system mediates stable, constitutive production of bacterial membrane proteins at yields that outperform those obtained with E. coli Lemo21(DE3), the current gold standard for bacterial membrane protein production. We envisage that the continuous, fine-tunable, and high-level production of membrane proteins by our method will greatly facilitate their study and their utilization in engineering cell factories.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Membrana/genética , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Vetores Genéticos/genética , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...